Home » Living with Neuroendocrine Cancer » Neuroendocrine Cancer – If you can see it, you can detect it!

Neuroendocrine Cancer – If you can see it, you can detect it!


octreo-vs-g68

Octreoscan vs Ga68 PET

Scanning is a key diagnostic and surveillance tool for any cancer.  Even though you have elevated bloods or urine (….or not), a picture of your insides is really like a thousand words…. and each picture has a story behind it.  Scanning can be a game changer in the hunt for tumours and although scans do not normally confirm the cancer type and grade, they certainly help with that piece of detective work and are key in the staging of the cancer.

When I read stories of people in a difficult diagnosis, I always find myself saying ‘a scan might resolve this’ and I always suggest people should try to get one.  Even in the case of a story about late diagnosis or a misdiagnosis, I find myself thinking ‘if only they had done a scan earlier’.  Despite what you read on NET forums, a CT scan will normally find some evidence of most tumour activity, in 90-95% of cases.

However, scans are not an exact science…..not yet!   Apart from human error, sometimes tumours are too small to see and/or there are issues with ‘pickup’ (i.e. with NETs, nuclear scans need efficient somatostatin receptors).  The differences between scan types are more quality (sensitivity) related as new technologies are introduced.

As for my own experience, I was very lucky.  I managed to get a referral to a specialist early on in my diagnosis phase. He looked at the referral notes and said “what are you doing this afternoon“. I replied “whatever you want me to do“.  He wanted to scan me.  He didn’t know I had cancer but his instincts led him to believe he needed to see inside my body. The scan results were pretty clear – I had a metastatic Cancer and further checks were now needed to ascertain exactly what it was. So I took my seat on the rollercoaster.  Here’s something I believe is so much better than the  impractical early diagnosis messages that seem to pervade our community:  If your doctors don’t suspect something, they won’t detect anything and I believe this is a very frequent outcome of many diagnoses for many cancers (not just NETs).

There’s frequent discussion about the best types of scans for different types of NETs and even for different parts of the anatomy.  This is correct and there’s also different views on the subject (including in the medical community),  However, a few well known facts that can be gleaned from authoritative NET sources:

Computed Topography (CT)

CT scans are often the initial imaging study for a patient presenting with signs or symptoms suggestive of many cancers including NET. These studies are most useful for disease staging and surgical planning as they provide excellent anatomic detail of the tumors themselves and surrounding structures. Primary NETs (GI and lung NETs) and their metastases are generally hyperenhancing with IV contrast and are best seen in the arterial phase of a triple phase CT scan.

In primary NETs, the average sensitivity of a CT scan is 73%. This modality is also useful when the primary tumor site is unknown. In a single-institution retrospective study, it was the most common study ordered to look for an unknown primary tumor site and was able to uncover the primary in 95% of cases. CT scans have even better sensitivity in detecting NET metastases, as they demonstrate 80% sensitivity for liver metastases (but see MRI below) and 75% sensitivity for other metastases (non-liver).

Magnetic resonance imaging (MRI)

MRI is the best conventional study to detail liver metastases in NETs. It is not as useful as CT for the detection of primary small bowel lesions or their associated lymphadenopathy, but is good for the detection of primary pancreatic NETs. A study comparing MRI, CT and standard somatostatin receptor-based imaging (OctreoScan) reported 95.2% sensitivity for MRI, 78.5% sensitivity for CT and 49.3% sensitivity for the OctreoScan in detecting hepatic metastases. MRI also detected significantly more liver lesions than the other two modalities.

Ultrasound (US)

The primary role of conventional ultrasound in neuroendocrine disease is detection of liver metastases and estimation of total liver tumor burden. This technique has the advantages of near-universal availability, intraoperative utility, minimal expense and lack of radiation. Most examinations are performed without contrast, which limits their sensitivity (compared with CT and MRI).  I know in my own situation, US was used as a quick check following identification of multiple liver metastasis during a CT scan. I’ve also had US used to monitor distant lymph nodes in the neck area but always in conjunction with the most recent CT scan output.

Endoscopic Ultrasound (EUS)

With increased access to endoscopy, NETs in the stomach, duodenum, and rectum are increasingly incidentally detected on upper endoscopy and colonoscopy. Patients are frequently asymptomatic without any symptoms referable to the a NET (i.e. non-functional).  EUS has also been used to survey patients at increased risk of developing pancreatic NETs. For example, patients with multiple endocrine neoplasia (MEN).  They are also frequently used in conjunction with biopsies using fine needle aspiration (FNA) guided by EUS.

18FDG 

18-fluoro-deoxy-glucose PET (FDG PET) is used to detect malignancy for a variety of tumor types. Unfortunately, its utility has not been borne out in NETs, as the majority of NETs tend to be relatively metabolically inactive and fail to take up the tracer well. However, high-grade NETs are more likely to demonstrate avid uptake of 18FDG, giving these scans utility in identifying tumors likely to display more aggressive behavior.

I-MIBG

Radioiodinated (123I) metaiodobenzylguanidine (MIBG) is an analog of norepinephrine that is used to image catecholamine-secreting NETs such as pheochromocytomas, paragangliomas and glomus tumors. In patients with functional pheochromocytomas or paragangliomas, this modality has a sensitivity of 90% and positive predictive value of 100%. However, it has limited use in Gastrointestinal (GI) NETs, as this modality was positive in only 49.1% of patients. In the same cohort of patients, OctreoScan was positive in 91.2%. As an imaging tool, this study is best used to confirm a diagnosis of pheochromocytoma or paraganglioma and define the extent of metastatic disease in these tumors. Its most practical use in GI NETs may be to determine whether patients with metastases may benefit from treatment with 131I-MIBG (a form of radiotherapy).

Somatostatin receptor-based imaging techniques

Somatostatin is an endogenous peptide that is secreted by neuroendocrine cells, activated immune cells and inflammatory cells. It affects its antiproliferative and antisecretory functions by binding to one of five types of somatostatin receptors (SSTR1- SSTR5). These are G-protein coupled receptors and are normally distributed in the brain, pituitary, pancreas, thyroid, spleen, kidney, gastrointestinal tract, vasculature, peripheral nervous system and on immune cells. Expression of SSTRs is highest on well-differentiated NETs. Somatostatin receptor type 2 is the most highly expressed subtype, followed by SSTRs 1 and 5, SSTR3 and SSTR4.

The ubiquity of SSTRs on NET cell surfaces makes them ideal targets for treatment (e.g. PRRT) and imaging. There are two primary types of somatostatin receptor-based imaging available.

Octreoscan

The most common (currently) is the OctreoScan, which uses the ligand 111In-DPTA-D-Phe-1-octreotide and binds primarily to SSTR2 and SSTR5. In its original form, it provided a planar, full body image. In modern practice, this image is fused with single photon emission computed tomography (SPECT) and CT. This takes advantage of the specificity of the OctreoScan and the anatomic detail provided by SPECT/CT, improving OctreoScan’s diagnostic accuracy. These improvements have been shown to alter the management in approximately 15% of cases, compared with just OctreoScan images. In primary tumors, the OctreoScan’s sensitivity ranges from 35 to 80%, with its performance for unknown primary tumors dipping beneath the lower end of that range (24%). Its ability to detect the primary is limited by the size but not SSTR2 expression, as tumors less than 2 cm are significantly more likely not to localize but do not have significantly different SSTR2 expression than their larger counterparts.

Ga68 PET

The newest somatostatin receptor-based imaging modality, although it has been around for some time, particularly in Europe. The most common of these labeled analogs are 68Ga-DOTATOC, 68Ga-DOTANOC and 68Ga-DOTATATE. The latter may often be referred to as NETSPOT in USA which is currently being rolled out after a 2016 approval – location update here.

These peptides are easier and cheaper to synthesize than standard octreotide-analog based ligands, boast single time point image acquisition compared to 2 or 3 days with Octreoscan. Its superior spatial resolution derives from the fact that it measures the radiation from two photons coincidentally. SPECT, in comparison, measures the gamma radiation emitted from one photon directly. This results in different limitations of detection – millimeters for 68Ga-PET compared with 1 cm or more for SPECT. There are a few choices of ligands with this type of imaging, but the differences lie primarily in their SSTR affinities – all of the ligands bind with great affinity to SSTR2 and SSTR5. 68Ga-DOTANOC also binds to SSTR3. Despite these differences, no single 68Ga ligand has stood out as the clear choice for use in NETs. As with standard somatostatin receptor-based imaging, these 68Ga-PET studies are fused with CT to improve anatomic localization.

Comparison studies between 68Ga-PET and standard imaging techniques (CT, OctreoScan) have universally demonstrated the superiority of 68Ga-PET in detection of NET primary tumors and metastases. Two early studies compared 68Ga-DOTATOC to standard somatostatin imaging (SRS)-SPECT and CT. Buchmann et al. reported that 68Ga-DOTATOC detected more than 279 NET lesions in 27 patients with histologically proven NETs, whereas SRS-SPECT detected only 157. The greatest number of lesions were detected in the liver. 68Ga-DOTATOC found more than 152 hepatic lesions, while SRS-SPECT found only 105, resulting in a 66% concordance rate between the two modalities. The concordance for abdominal lymph nodes was worse at 40.1%.  Cleary these advantages are going to impact on treatment plans, some needing to be altered.  In addition, 68Ga-DOTA PET imaging can be used to determine which patients might benefit from use of Somatostatin Analogues (Octreotide/Lanreotide) and PRRT.

Summary

If you can see it, you can detect it.

Sources:

1. Imaging in neuroendocrine tumors: an update for the clinician, Maxwell, Howe.

2.  Useful video summary from the NET Patient Foundation describing the different scans for NET Cancer and what to expect.  Worth a look.  CLICK HERE for the scan video

Sooner we can all get access to the latest radionuclide scans the better – this is currently an unmet need in many countries.

If you are any doubt about which type of scan is best for you and their availability, please consult your specialists.

Thanks for reading

Ronny

I’m also active on Facebook.  Like my page for even more news.

Disclaimer

My Diagnosis and Treatment History

Most Popular Posts

Sign up for my twitter newsletter

Check out my Podcast (click and press play)

Remember ….. in the war on Neuroendocrine Cancer, let’s not forget to win the battle for better quality of life!

community_titled_transparent_2013-10-22

 

 

 

 

octreo-vs-g68

Scanning is a key diagnostic and surveillance tool for any cancer.  Even though you have elevated bloods or urine (….or not), a picture of your insides is really like a thousand words…. and each picture has a story behind it.  Scanning can be a game changer in the hunt for tumours and although scans can’t (yet) confirm the cancer type and grade, they certainly help with that piece of detective work and are key in the staging of the cancer.

When I read stories of people in a difficult diagnosis, I always find myself saying ‘a scan might resolve this’ and I always suggest people should try to get one.  Even in the case of a story about late diagnosis or a misdiagnosis, I find myself thinking ‘if only they had done a scan earlier’.  Despite what you read on NET forums, a CT scan will normally find some evidence of most tumour activity.

However, scans are not an exact science…..not yet!   Apart from human error, sometimes tumours are too small to see and/or there are issues with ‘pickup’ (i.e. with NETs, nuclear scans need efficient somatostatin receptors).  However, technology is improving all the time and you can read about this in my blog Neuroendocrine Cancer – Exciting times Ahead.

As for my own experience, I was very lucky.  I managed to get a referral to a specialist early on in my diagnosis phase. He looked at the referral notes and said “what are you doing this afternoon”. I replied “whatever you want me to do”.  He wanted to scan me.  He didn’t know I had cancer but his instincts led him to believe he needed to see inside my body. The scan results were pretty clear – I had a metastatic Cancer and further checks were now needed to ascertain exactly what it was. So I took my seat on the rollercoaster.  Here’s something I always say I believe is so much better than the  impractical early diagnosis messages that seem to pervade our community:  If your doctors don’t suspect something, they won’t detect anything and I believe this is a very frequent outcome of many diagnoses for many cancers (not just NETs).

There’s frequent discussion about the best types of scans for different types of NETs and even for different parts of the anatomy.  This is correct and there’s also different views on the subject (including in the medical community),  However, a few well known facts that can be gleaned from authortative NET sources?L04/10/2017
TEBAY SSOUTH PENRITH
£4.60

+
of transaction
03/10/2017
THE BLACKSMITHS ARMS BRAMPTON
£38.40

+
of transaction
02/10/2017
COSTA COFFEE CARLISLE
£3.75

+
of transaction
02/10/2017
LLOYDS PHARMACY CARLISLE
£28.48

+
of transaction
02/10/2017
THE WORKS CARLISLE
£13.00

+
of transaction
02/10/2017
THE LANES PARKING CARLISLE
£3.00

+
of transaction
01/10/2017
LOW ROW SS BRAMPTON
£46.08

+
of transaction
30/09/2017
HALLBANKGATE HUB LIMIT BRAMPTON CA8
£8.13

+
of transaction
29/09/2017
DOTS PLACE RICHMOND YORK
£5.97

+
of transaction
29/09/2017
COSTA COFFEE 43036280 RICHMOND
£13.45

+
of transaction
28/09/2017
RR COSTA COFFEE HARTLE PENTRITH
£8.00

+
of transaction
27/09/2017
CO-OP GROUP 700901 BRAMPTON NEW
£16.36

+
of transaction
25/09/2017
PRIMARK – 696 CARLISLE
£20.50

+
of transaction
25/09/2017
PRIMARK – 696 CARLISLE
£6.50

+
of transaction
25/09/2017
THE GIFT COMPANY CARLISLE
£13.98

+
of transaction
25/09/2017
TESCO PAY AT PUMP 3922 CARLISLE 2
£41.43

+
of transaction
25/09/2017
TESCO STORE 2222 CARLISLE 2
£4.88

+
of transaction
25/09/2017
TESCO STORES 2222 CARLISLE 2
£21.58

+
of transaction
25/09/2017
CARLISLE VISIT CTR CARLISLE
£18.97

+
of transaction
25/09/2017
BODYCARE CARLISLE
£6.95

+
of transaction
25/09/2017
BOOTS,CARLISLE CARLISLE
£20.47

+
of transaction
24/09/2017
CO-OP GROUP 700901 BRAMPTON NEW
£30.85

+
of transaction
23/09/2017
ROADCHEF M SERV UPAY L ROCHESTER
£5.58

+
of transaction
23/09/2017
FOUR ACRES FILINF STAT WILTSHIRE
£17.74

+
of transaction
22/09/2017
SAINSBURYS S/MKTS FERNDOWN
£28.80

+
of transaction
21/09/2017
POUNDWORLD RETAIL SOUTHAMPTON P
£9.50

+
of transaction
21/09/2017
LUNA COFFEE RINGWOOD
£3.45

+
of transaction
20/09/2017
FIVE GUYS BOURNEMOUTH BOURNEMOUTH
£15.40
I found this useful video summary from the NET Patient Foundation describing the different scans for NET Cancer and what to expect.  Worth a look.

Sooner we can all get access to the latest radionuclide scans the better!

CLICK HERE for the scan video

Thanks for reading

Ronny

Hey, I’m also active on Facebook.  Like my page for even more news.

Disclaimer

My Diagnosis and Treatment History

Most Popular Posts

Sign up for my twitter newsletter

Check out my Podcast (click and press play)

Remember ….. in the war on Neuroendocrine Cancer, let’s not forget to win the battle for better quality of life!

community_titled_transparent_2013-10-22

 

 

 

 


2 Comments

  1. Pam Mckinnis says:

    My concern with CT scans is the huge amount of radiation for each one. From what I read each CT scan is worth about 10 chest x-rays. I would rather do MRI’s. Opinions?

    Liked by 1 person

Thanks for the comment, make sure you have ticked the box to receive notifications of responses

Fill in your details below or click an icon to log in:

WordPress.com Logo

You are commenting using your WordPress.com account. Log Out / Change )

Twitter picture

You are commenting using your Twitter account. Log Out / Change )

Facebook photo

You are commenting using your Facebook account. Log Out / Change )

Google+ photo

You are commenting using your Google+ account. Log Out / Change )

Connecting to %s

Enter your email address to follow this blog and receive notifications of new posts by email.

Join 10,023 other followers

Follow Ronny Allan – Living with Neuroendocrine Cancer on WordPress.com

Blog Stats

  • 392,936 hits

Recent Posts

%d bloggers like this: